

# **Characterization and Validation of Irradiated Vacuum Sensors**

**Adrian Huber** 

13 August, 2025

#### Supervision

Sune Jakobsen (EP-DT-TP)

Valentina Reynaud (EP-DT-DI)

Maciej Ostrega (EP-DT-DI)

Xavier Pons (EP-DT-DI)

### **About myself**



Exchange Programme – Singapore



MSc. Quantum Engineering





HOCH SCHULE FFIER OFFE HAEFFIER





OpsEngineering Amazon



### **Project Overview**

#### **Challenge:**

- HL-LHC radiation levels 10x higher need radiation-tolerant vacuum sensors
- Current rad-hard sensors extremely expensive
- New low-cost Pirani Gauges available, but radiation tolerance unknown
- Need validation of performance after radiation exposure

#### **Historical Workarounds:**







#### Approach:

Build test setup → Baseline characterization → Controlled irradiation → Evaluate radiation effects

### Thermopiles Working Principle



- Based on Pirani gauge principle: Measures vacuum pressure via gas thermal conductivity
- Resistive heater (1.2 V excitation) dissipates power; heat loss through gas conduction ∝ pressure
- Thermopile (series thermocouples) detects temperature difference (ΔT) between hot heater membrane and cold substrate using Seebeck effect



Picture of the Sensor



Calibration Curve according to datasheet 11

[1] Posifa Technologies. 'Datasheet\_PVC3000\_VaCuum\_ReVC\_C12'. Accessed:2025-08-15. (2021), [Online]. Available: https://posifatech.com/wp-content/uploads/2022/03/Datasheet\_PVC3000\_Vacuum\_RevC\_C12.pdf



# **Vacuum Setup**



Cleaning Components in Ultrasonic Cleaner





Pirani Gauges

Turbomolecular

Pump

Rotary Vane

Pump



Vacuum Manifold





Needle Valve



Relief Valve

Volume

### **Readout System**





# **Readout System**



**Complete Readout System** 



Sensor with feedthrough connector



Live Monitoring of System



# **Post-Processing and Analysis**



→ Conversion of Datasheet doesn't fit for all sensors

→ Each sensor has a different characteristic

→ <u>Attempt:</u> Try the same sensor across multiple test rounds



### Characterization before Radiation

#### **But:** Sensor output is reproduceable across test runs



→ Solution: Individual calibration curves for characterization



### Characterization before Radiation



**Preliminary Baseline Results** 

#### **Baseline Establishment:**

- Interpolation Baseline including uncertainty function
- Divided in 3 different ranges for better drift detection

#### Classification of radiation effects:

- Offset drift 
  → consistently high or low
- Gain drift → sensitivity changes
- Non-linear drift → response curve gets warped
- Noise increase → becomes less precise
- Complete break down

#### **Acceptance:**

No specified threshold, depends on application



## **Radiation Exposure in CHARM**

Batches of 6 Sensors each were placed in different positions for certain radiation exposure levels





Proton beam on target simulating LHC conditions

| Batch | Duration | Radiation Dose |
|-------|----------|----------------|
| 1     | 1 week   | ~ 30 Gy        |
| 2     | 1 week   | ~ 500 Gy       |
| 3     | 3 weeks  | ~1500 Gy       |
| 4     | 10 weeks | ~5000 Gy       |



Batch 1 positioned at a distance to the proton beam



### **Current Progress & Preliminary Results**

**Current state** 

#### Build test setup → Baseline characterization → Controlled irradiation → Evaluate radiation effects



**Preliminary Baseline Results** 



Irradiated Sensors waiting for clearance



### Outlook



#### **Next steps:**

- Evaluation of irradiated sensors
- Standardized Framework



#### **Future Tasks:**

- Improved vacuum setup
- Expand readout to other types of sensors
- Automatization of evaluation process
- Irradiate 4<sup>th</sup> batch with higher radiation dose

### Thanks!

Especially to my supervisors and contributors:

Sune Jakobsen (EP-DT-TP)

Valentina Reynaud (EP-DT-DI)

Maciej Ostrega (EP-DT-DI)

Xavier Pons (EP-DT-DI)

Miranda Van Stenis (EP-DT-EF)

Marc Carrichon and Bayram Dinger (EP-DT-DI Workshop)

Wil Vollenberg (TE-VSC-SCC)



home.cern

# **Backup Slides**



## **Supply Voltage Dependence**





### **Sensor Identification**



Dedicated Sensor Positions and Explanation of Marking



Binary Marking on Sensor

## **Needle Valve Settings**



Attached Scale on Needle Valve



Excerpt of the Settings for Test Rounds

